Near-field corrosion interactions between glass and corrosion resistant alloys

Xiaolei Guo, Stephane Gin, Hongshen Liu, Dien Ngo, Jiawei Luo, Seong H. Kim, Chandi Mohanty, John D. Vienna, Joseph V. Ryan, Gerald S. Frankel

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

This study explores the corrosion interactions between model nuclear waste glass materials and corrosion resistant alloys, under accelerated conditions that simulate the near field of a nuclear waste repository. The interactions between the corrosion of stainless steel (SS) 316, alloy G30, or alloy 625, and international simple glass or soda-lime silica glass are systematically studied. The dissimilar materials were exposed in close proximity to each other in different electrolytes at 90 °C. After exposure, the glass surface exposed near metals showed different regimes of corrosion, with distinct surface morphologies and chemistries that were likely affected by the local environment created by the localized corrosion of metals. Surface and solution analyses showed that the corrosion rate of glass was enhanced by the presence of metals. Infrared spectroscopy data suggested the local build-up of stresses in the contact area of glass, which may lead to the mechanical instability of the glass alteration layer. On the other hand, the effect of glass on metal corrosion is strongly dependent on the leaching solution. In electrolytes containing abundant aggressive anions such as Cl, glass seems to suppress the localized corrosion of SS by the precipitation of a Si-rich surface film that protects the SS substrate from solutions. However, in less aggressive electrolytes, the corrosion rate of SS was increased by the presence of glass corrosion products. Overall, our study showed that the hidden and localized damage on glass in contact with metals may enhance the release rate of glass components compared to typical uniform glass corrosion.

Original languageEnglish (US)
Article number10
Journalnpj Materials Degradation
Volume4
Issue number1
DOIs
StatePublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Chemistry (miscellaneous)
  • Materials Science (miscellaneous)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Near-field corrosion interactions between glass and corrosion resistant alloys'. Together they form a unique fingerprint.

Cite this