Near-ideal electromechanical coupling in textured piezoelectric ceramics

Yongke Yan, Liwei D. Geng, Hairui Liu, Haoyang Leng, Xiaotian Li, Yu U. Wang, Shashank Priya

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Electromechanical coupling factor, k, of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude of k, via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on <001> textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics illustrate that k can reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin of k in perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen via d-p hybridization contributes most towards the magnitude of k. This demonstration of near-ideal k value in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices.

Original languageEnglish (US)
Article number3565
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Near-ideal electromechanical coupling in textured piezoelectric ceramics'. Together they form a unique fingerprint.

Cite this