NEBULA: A Neuromorphic Spin-Based Ultra-Low Power Architecture for SNNs and ANNs

Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen Lu, Kezhou Yang, Abhronil Sengupta, Vijaykrishnan Narayanan, Chita R. Das

Research output: Chapter in Book/Report/Conference proceedingConference contribution

35 Scopus citations

Abstract

Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads. In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chip that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture, ISCA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages363-376
Number of pages14
ISBN (Electronic)9781728146614
DOIs
StatePublished - May 2020
Event47th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2020 - Virtual, Online, Spain
Duration: May 30 2020Jun 3 2020

Publication series

NameProceedings - International Symposium on Computer Architecture
Volume2020-May
ISSN (Print)1063-6897

Conference

Conference47th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2020
Country/TerritorySpain
CityVirtual, Online
Period5/30/206/3/20

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'NEBULA: A Neuromorphic Spin-Based Ultra-Low Power Architecture for SNNs and ANNs'. Together they form a unique fingerprint.

Cite this