Necessarily Optimal One-Sided Matchings

Hadi Hosseini, Vijay Menon, Nisarg Shah, Sujoy Sikdar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations


We study the classical problem of matching n agents to n objects, where the agents have ranked preferences over the objects. We focus on two popular desiderata from the matching literature: Pareto optimality and rank-maximality. Instead of asking the agents to report their complete preferences, our goal is to learn a desirable matching from partial preferences, specifically a matching that is necessarily Pareto optimal (NPO) or necessarily rank-maximal (NRM) under any completion of the partial preferences. We focus on the top-k model in which agents reveal a prefix of their preference rankings. We design efficient algorithms to check if a given matching is NPO or NRM, and to check whether such a matching exists given top-k partial preferences. We also study online algorithms for eliciting partial preferences adaptively, and prove bounds on their competitive ratio.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Number of pages8
ISBN (Electronic)9781713835974
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021


Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Cite this