Negative refraction, gain and nonlinear effects in hyperbolic metamaterials

Christos Argyropoulos, Nasim Mohammadi Estakhri, Francesco Monticone, Andrea Alù

Research output: Contribution to journalArticlepeer-review

152 Scopus citations


The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.

Original languageEnglish (US)
Pages (from-to)15037-15047
Number of pages11
JournalOptics Express
Issue number12
StatePublished - Jun 2013

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Negative refraction, gain and nonlinear effects in hyperbolic metamaterials'. Together they form a unique fingerprint.

Cite this