Neutrino propagation through Earth: modeling uncertainties using nuPyProp

NuSpaceSim Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

Using the Earth as a neutrino converter, tau neutrino fluxes from astrophysical point sources can be detected by tau-lepton-induced extensive air showers (EASs). Both muon neutrino and tau neutrino induced upward-going EAS signals can be detected by terrestrial, sub-orbital and satellite-based instruments. The sensitivity of these neutrino telescopes can be evaluated with the nuSpaceSim package, which includes the nuPyProp simulation package. The nuPyProp package propagates neutrinos (νμ, ντ) through the Earth to produce the corresponding charged leptons (muons and tau-leptons). We use nuPyProp to quantify the uncertainties from Earth density models, tau depolarization effects and photo-nuclear electromagnetic energy loss models in the charged lepton exit probabilities and their spectra. The largest uncertainties come from electromagnetic energy loss modeling, with as much as a 20-50% difference between the models. We compare nuPyProp results with other simulation package results.

Original languageEnglish (US)
Article number1115
JournalProceedings of Science
Volume444
StatePublished - Sep 27 2024
Event38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japan
Duration: Jul 26 2023Aug 3 2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Neutrino propagation through Earth: modeling uncertainties using nuPyProp'. Together they form a unique fingerprint.

Cite this