Abstract
This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding neutronic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of applicants’ calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the state of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., power distribution, fluence, kinetics parameters and reactivity). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.
Original language | English (US) |
---|---|
Pages | 304-316 |
Number of pages | 13 |
State | Published - Jan 1 2018 |
Event | International Topical Meeting on Advances in Thermal Hydraulics 2018, ATH 2018 - Held in conjunction with the 2018 American Nuclear Society (ANS) Winter Meeting - Orlando, United States Duration: Nov 11 2018 → Nov 15 2018 |
Other
Other | International Topical Meeting on Advances in Thermal Hydraulics 2018, ATH 2018 - Held in conjunction with the 2018 American Nuclear Society (ANS) Winter Meeting |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 11/11/18 → 11/15/18 |
All Science Journal Classification (ASJC) codes
- Geotechnical Engineering and Engineering Geology
- Nuclear Energy and Engineering
- Nuclear and High Energy Physics