TY - GEN
T1 - New directions in information theoretic security
T2 - 2015 IEEE Information Theory Workshop, ITW 2015
AU - Yener, Aylin
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/6/24
Y1 - 2015/6/24
N2 - The past decade has witnessed significant effort towards establishing reliable and information theoretically secure rates in communication networks, taking advantage of the properties of the communication medium. Such efforts include those in the wireless medium where simultaneous transmissions and the ensuing interference can prove advantageous from an information theoretic secrecy point of view. With the goal of obtaining a secrecy rate that scales with transmit power, structured signaling with simultaneous favorable signal alignment at the legitimate receiver(s) and unfavorable signal alignment at the eavesdropper(s) has proven particularly useful in multi-terminal Gaussian channels. Many challenges remain however in realizing the vision of absolute security provided by the wireless physical layer including handling more realistic models. In this paper, we provide a brief overview of the state of the art, the forward look and argue for an additional asset that could be utilized for secrecy, i.e., bidirectional signaling. Taking the bidirectional wiretap channel as an example, Gaussian signaling is demonstrated to be as good as structured signaling from the degrees of freedom point of view, while observed to be performing better with finite transmit power. Moreover, taking bidirectional signals explicitly into account for encoding performs even better and provides a way forward to synergistically combine physical layer based secrecy and encryption.
AB - The past decade has witnessed significant effort towards establishing reliable and information theoretically secure rates in communication networks, taking advantage of the properties of the communication medium. Such efforts include those in the wireless medium where simultaneous transmissions and the ensuing interference can prove advantageous from an information theoretic secrecy point of view. With the goal of obtaining a secrecy rate that scales with transmit power, structured signaling with simultaneous favorable signal alignment at the legitimate receiver(s) and unfavorable signal alignment at the eavesdropper(s) has proven particularly useful in multi-terminal Gaussian channels. Many challenges remain however in realizing the vision of absolute security provided by the wireless physical layer including handling more realistic models. In this paper, we provide a brief overview of the state of the art, the forward look and argue for an additional asset that could be utilized for secrecy, i.e., bidirectional signaling. Taking the bidirectional wiretap channel as an example, Gaussian signaling is demonstrated to be as good as structured signaling from the degrees of freedom point of view, while observed to be performing better with finite transmit power. Moreover, taking bidirectional signals explicitly into account for encoding performs even better and provides a way forward to synergistically combine physical layer based secrecy and encryption.
UR - http://www.scopus.com/inward/record.url?scp=84938929460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938929460&partnerID=8YFLogxK
U2 - 10.1109/ITW.2015.7133165
DO - 10.1109/ITW.2015.7133165
M3 - Conference contribution
AN - SCOPUS:84938929460
T3 - 2015 IEEE Information Theory Workshop, ITW 2015
BT - 2015 IEEE Information Theory Workshop, ITW 2015
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 26 April 2015 through 1 May 2015
ER -