Ni-Concentration Dependence of Directed Energy Deposited NiTi Alloy Microstructures

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Localized re-melting and re-heating in regions between overlapping passes and layers drive localized microstructure development during laser-based additive manufacturing processes. Ti-rich (Ti52.1Ni47.9 at.%) and Ni-rich (Ni53Ti47 at.%) alloy builds were fabricated using a laser-based directed energy deposition (LDED) process and sectioned in three orthogonal cross-sections to provide a 3-dimensional view of the grain and precipitate morphologies in the interpass and interlayer regions. Fine equiaxed grains, which were an order of magnitude smaller than the columnar grains in the bulk regions, were observed in the interfacial regions. While these columnar grains showed preferential orientation in the highest heat flow direction corresponding to the build height, the fine equiaxed grain structures in the interfacial regions showed no orientation preferences. In addition to these changes in grain structures, precipitation of second phases is also impacted in these regions. The re-melting and re-heating characteristic of the interfacial regions produces precipitates in the Ni-rich alloys with fine oriented morphologies different from those observed in the bulk regions.

Original languageEnglish (US)
Pages (from-to)182-187
Number of pages6
JournalShape Memory and Superelasticity
Volume5
Issue number2
DOIs
StatePublished - Jun 15 2019

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Ni-Concentration Dependence of Directed Energy Deposited NiTi Alloy Microstructures'. Together they form a unique fingerprint.

Cite this