TY - JOUR
T1 - Nicotine absorption during electronic cigarette use among regular users
AU - Yingst, Jessica M.
AU - Foulds, Jonathan
AU - Veldheer, Susan
AU - Hrabovsky, Shari
AU - Trushin, Neil
AU - Eissenberg, Thomas T.
AU - Williams, Jill
AU - Richie, John P.
AU - Nichols, Travis T.
AU - Wilson, Stephen J.
AU - Hobkirk, Andrea L.
N1 - Funding Information:
This project and the data collection tools for survey responses were supported by the Penn State Clinical & Translational Science Institute, Pennsylvania State University CTSA (NIH/NCATS Grant Number UL1 TR000127). Additional support was provided by the Penn State Hershey Cancer Institute and the Penn State Social Science Research Institute. JF, JY, SV, SH, NT, JR are primarily funded by the National Institute on Drug Abuse of the National Institutes of Health (NIH-NIDA) and the Center for Tobacco Products of the U.S. Food and Drug Administration (under Award Numbers P50DA036107, P50DA036105). ALH is supported by the Penn State Clinical & Translational Science Institute (NIH/NIDA Grant Number K23DA045081).TE is supported by FDA/NIH grant P50DA036105. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2019 Yingst et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Background The capability of electronic cigarette devices (e-cigs) to deliver nicotine is key to their potential to replace combustible cigarettes. We compared nicotine delivery and subjective effects associated with the use of two classes of e-cigarettes and cigarettes. Methods 14 e-cigarette users were instructed to vape their own e-cigarette device every 20 seconds for 10 minutes while blood was drawn at 1, 2, 4, 6, 8, 10,12, and 15 minutes after initiating vaping. Users rated withdrawal symptoms and side effects before and after vaping. E-cigarette devices were classified as first-generation (same size as cigarette, no activation button) or advanced (larger than cigarette with an activation button). Separately, 10 cigarette smokers completed a similar protocol. Fisher’s Exact Test and two-sided t-tests were used as appropriate to determine differences in outcomes between first-generation e-cigarette users, advanced e-cigarette users, and smokers. Results Compared to first-generation devices, advanced devices were associated with greater serum nicotine Cmax (ng/ml) (11.5 v. 2.8, p = 0.0231) and greater nicotine boost (ng/ml) (10.8 v. 1.8, p = 0.0177). Overall, e-cigarettes users experienced a significant reduction in withdrawal and craving, although there were no significant differences between users of first-generation and advanced devices. Comparing e-cigarettes overall to cigarettes, cigarettes were associated with greater Cmax (25.9 v. 9.0, p = 0.0043) and greater nicotine boost (21.0 v. 8.2, p = 0.0128). Conclusions Advanced e-cigarettes delivered significantly more nicotine than first-generation devices but less than combustible cigarettes. Overall, e-cigarette use was associated with a reduction in withdrawal and craving with no reported side effects. The wide variation in nicotine absorption from different e-cigarette devices should be considered in studies of e-cigarettes for smoking cessation.
AB - Background The capability of electronic cigarette devices (e-cigs) to deliver nicotine is key to their potential to replace combustible cigarettes. We compared nicotine delivery and subjective effects associated with the use of two classes of e-cigarettes and cigarettes. Methods 14 e-cigarette users were instructed to vape their own e-cigarette device every 20 seconds for 10 minutes while blood was drawn at 1, 2, 4, 6, 8, 10,12, and 15 minutes after initiating vaping. Users rated withdrawal symptoms and side effects before and after vaping. E-cigarette devices were classified as first-generation (same size as cigarette, no activation button) or advanced (larger than cigarette with an activation button). Separately, 10 cigarette smokers completed a similar protocol. Fisher’s Exact Test and two-sided t-tests were used as appropriate to determine differences in outcomes between first-generation e-cigarette users, advanced e-cigarette users, and smokers. Results Compared to first-generation devices, advanced devices were associated with greater serum nicotine Cmax (ng/ml) (11.5 v. 2.8, p = 0.0231) and greater nicotine boost (ng/ml) (10.8 v. 1.8, p = 0.0177). Overall, e-cigarettes users experienced a significant reduction in withdrawal and craving, although there were no significant differences between users of first-generation and advanced devices. Comparing e-cigarettes overall to cigarettes, cigarettes were associated with greater Cmax (25.9 v. 9.0, p = 0.0043) and greater nicotine boost (21.0 v. 8.2, p = 0.0128). Conclusions Advanced e-cigarettes delivered significantly more nicotine than first-generation devices but less than combustible cigarettes. Overall, e-cigarette use was associated with a reduction in withdrawal and craving with no reported side effects. The wide variation in nicotine absorption from different e-cigarette devices should be considered in studies of e-cigarettes for smoking cessation.
UR - http://www.scopus.com/inward/record.url?scp=85069971920&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069971920&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0220300
DO - 10.1371/journal.pone.0220300
M3 - Article
C2 - 31344110
AN - SCOPUS:85069971920
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 7
M1 - e0220300
ER -