Nitric oxide-mediated cutaneous microvascular function is not altered in middle-aged-to-older adults following mild SARS-CoV-2 infection: A pilot study

Gabrielle A. Dillon, S. Tony Wolf, Auni C. Williams, W. Larry Kenney, Lacy M. Alexander

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


We tested the hypothesis that post-COVID-19 adults (PC) would have impaired cutaneous nitric oxide (NO)-mediated vasodilation compared to controls (CON). We performed a cross-sectional study including 10 (10 F/0 M, 69 ± 7 years) CON and 7 (2 F/5 M, 66 ± 8 years) PC (223 ± 154 days post-diagnosis). COVID-19 symptoms severity (survey) was assessed (0-100 scale for 18 common symptoms). NO-dependent cutaneous vasodilation was induced by a standardized 42°C local heating protocol and quantified via perfusion of 15 mM NG-nitro-L-arginine methyl ester during the plateau of the heating response (intradermal microdialysis). Red blood cell flux was measured with laser-Doppler flowmetry. Cutaneous vascular conductance (CVC = flux/mm Hg) was presented as a percentage of maximum (28 mM sodium nitroprusside +43°C). All data are means ± SD. The local heating plateau (CON: 71 ± 23% CVCmax vs. PC: 81 ± 16% CVCmax , p = 0.77) and NO-dependent vasodilation (CON: 56 ± 23% vs. PC: 60 ± 22%, p = 0.77) were not different between groups. In the PC group neither time since diagnosis nor peak symptom severity (46 ± 18 AU) correlated with NO-dependent vasodilation (r < 0.01, p = 0.99 and r = 0.42, p = 0.35, respectively). In conclusion, middle-aged and older adults who have had COVID-19 did not have impaired NO-dependent cutaneous vasodilation. Additionally, in this cohort of PC, neither time since diagnosis nor symptomology were related to microvascular function.

Original languageEnglish (US)
Pages (from-to)e15704
JournalPhysiological reports
Issue number11
StatePublished - Jun 1 2023

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Cite this