NKT: Evidence-aware Inference for Neutralized Zero-shot Transfer

Xiaotong Feng, Meng Fen Chiang, Wang Chien Lee, Zixin Kuang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cross-domain knowledge transfer, which has received growing research attention in natural language processing (NLP), is a promising approach for various NLP tasks such as evidence-aware inference. However, the presence of biased language in well-known benchmarks notably misleads predictive models due to the hidden false correlations in the linguistic corpus. In this paper, we propose Neutralized Knowledge Transfer framework (NKT) to equip pre-trained language models with neutralized transferability. Specifically, we construct debiased multi-source corpora (CV and EL) for two exemplary knowledge transfer tasks: claim verification and evidence learning, respectively. To counteract biased language, we design a neutralization mechanism in the presence of label skewness. We also design a label adaptation mechanism in light of the mixed label systems in the multi-source corpora. In extensive experiments, the proposed NKT framework shows effective transferability contrarily to the disability of dominant baselines, particularly in the zero-shot cross-domain transfer setting.

Original languageEnglish (US)
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages6671-6681
Number of pages11
ISBN (Electronic)9782493814104
StatePublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: May 20 2024May 25 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period5/20/245/25/24

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Computer Science Applications

Cite this