Abstract
The 1H NMR spectroscopy was used to study lignin peroxidase (LiP) and manganese peroxidase (MnP) containing deuterated histidines. LiP and MnP were obtained from a histidine auxotroph of the fungus Phanerochaete chrysosporium grown in the presence of deuterated histidines. The derivatives with deuterated histidines have allowed a firm assignment of the protons of the distal and proximal histidines. We have also found that the LiP from this strain exhibits different orientations of the 2-vinyl group compared to the LiP from the strain previously studied. Mobility of the group has also been detected, thus explaining the apparent inconsistency between X-ray solid-state and NMR solution data. The 15N shift values of 15N-enriched CN− in the cyanide derivatives of LiP and MnP have also been measured. The shift patterns, both for 15N and for the proximal histidine protons of several peroxidases, are consistent with predominant contact shift contributions which reflect the bond strength of the metal-axial ligand. Finally, our results confirm a correlation between shift values of 15N and those of proximal histidine protons and the Fe3+/Fe2+ redox potentials.
Original language | English (US) |
---|---|
Pages (from-to) | 13483-13489 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 32 |
Issue number | 49 |
DOIs | |
State | Published - 1993 |
All Science Journal Classification (ASJC) codes
- Biochemistry