TY - JOUR
T1 - Noble gases recycled into the mantle through cold subduction zones
AU - Smye, Andrew J.
AU - Jackson, Colin R.M.
AU - Konrad-Schmolke, Matthias
AU - Hesse, Marc A.
AU - Parman, Steve W.
AU - Shuster, David L.
AU - Ballentine, Chris J.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole – a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5–35% and 60–80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.
AB - Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole – a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5–35% and 60–80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.
UR - http://www.scopus.com/inward/record.url?scp=85019601473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019601473&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2017.04.046
DO - 10.1016/j.epsl.2017.04.046
M3 - Article
AN - SCOPUS:85019601473
SN - 0012-821X
VL - 471
SP - 65
EP - 73
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -