TY - JOUR
T1 - Non-Gaussian diffusive fluctuations in Dirac fluids
AU - Gopalakrishnan, Sarang
AU - McCulloch, Ewan
AU - Vasseur, Romain
N1 - Publisher Copyright:
Copyright © 2024 the Author(s). Published by PNAS.
PY - 2024/12/10
Y1 - 2024/12/10
N2 - Dirac fluids-interacting systems obeying particle-hole symmetry and Lorentz invariance-are among the simplest hydrodynamic systems; they have also been studied as effective descriptions of transport in strongly interacting Dirac semimetals. Direct experimental signatures of the Dirac fluid are elusive, as its charge transport is diffusive as in conventional metals. In this paper, we point out a striking consequence of fluctuating relativistic hydrodynamics: The full counting statistics (FCS) of charge transport is highly non-Gaussian. We predict the exact asymptotic form of the FCS, which generalizes a result previously derived for certain interacting integrable systems. A consequence is that, starting from quasi-one-dimensional nonequilibrium initial conditions, charge noise in the hydrodynamic regime is parametrically enhanced relative to that in conventional diffusive metals.
AB - Dirac fluids-interacting systems obeying particle-hole symmetry and Lorentz invariance-are among the simplest hydrodynamic systems; they have also been studied as effective descriptions of transport in strongly interacting Dirac semimetals. Direct experimental signatures of the Dirac fluid are elusive, as its charge transport is diffusive as in conventional metals. In this paper, we point out a striking consequence of fluctuating relativistic hydrodynamics: The full counting statistics (FCS) of charge transport is highly non-Gaussian. We predict the exact asymptotic form of the FCS, which generalizes a result previously derived for certain interacting integrable systems. A consequence is that, starting from quasi-one-dimensional nonequilibrium initial conditions, charge noise in the hydrodynamic regime is parametrically enhanced relative to that in conventional diffusive metals.
UR - http://www.scopus.com/inward/record.url?scp=85211593188&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85211593188&partnerID=8YFLogxK
U2 - 10.1073/pnas.2403327121
DO - 10.1073/pnas.2403327121
M3 - Article
C2 - 39630864
AN - SCOPUS:85211593188
SN - 0027-8424
VL - 121
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 50
M1 - e2403327121
ER -