TY - JOUR
T1 - Non-gaussian halo bias re-examined
T2 - Mass-dependent amplitude from the peak-background split and thresholding
AU - Desjacques, Vincent
AU - Jeong, Donghui
AU - Schmidt, Fabian
PY - 2011/9/14
Y1 - 2011/9/14
N2 - Recent results of N-body simulations have shown that current theoretical models are not able to correctly predict the amplitude of the scale-dependent halo bias induced by primordial non-Gaussianity, for models going beyond the simplest, local quadratic case. Motivated by these discrepancies, we carefully examine three theoretical approaches based on (1) the statistics of thresholded regions, (2) a peak-background split method based on separation of scales, and (3) a peak-background split method using the conditional mass function. We first demonstrate that the statistics of thresholded regions, which is shown to be equivalent at leading order to a local bias expansion, cannot explain the mass-dependent deviation between theory and N-body simulations. In the two formulations of the peak-background split on the other hand, we identify an important, but previously overlooked, correction to the non-Gaussian bias that strongly depends on halo mass. This new term is in general significant for any primordial non-Gaussianity going beyond the simplest local fNL model. In a separate paper (to be published in PRD rapid communication), the authors compare these new theoretical predictions with N-body simulations, showing good agreement for all simulated types of non-Gaussianity.
AB - Recent results of N-body simulations have shown that current theoretical models are not able to correctly predict the amplitude of the scale-dependent halo bias induced by primordial non-Gaussianity, for models going beyond the simplest, local quadratic case. Motivated by these discrepancies, we carefully examine three theoretical approaches based on (1) the statistics of thresholded regions, (2) a peak-background split method based on separation of scales, and (3) a peak-background split method using the conditional mass function. We first demonstrate that the statistics of thresholded regions, which is shown to be equivalent at leading order to a local bias expansion, cannot explain the mass-dependent deviation between theory and N-body simulations. In the two formulations of the peak-background split on the other hand, we identify an important, but previously overlooked, correction to the non-Gaussian bias that strongly depends on halo mass. This new term is in general significant for any primordial non-Gaussianity going beyond the simplest local fNL model. In a separate paper (to be published in PRD rapid communication), the authors compare these new theoretical predictions with N-body simulations, showing good agreement for all simulated types of non-Gaussianity.
UR - http://www.scopus.com/inward/record.url?scp=80053917424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053917424&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.84.063512
DO - 10.1103/PhysRevD.84.063512
M3 - Article
AN - SCOPUS:80053917424
SN - 1550-7998
VL - 84
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 063512
ER -