Abstract
Three-dimensional (3-D) images are now common in radiology. A 3-D image is formed by stacking a contiguous sequence of two-dimensional cross-sectional images, or slices. Typically, the spacing between known slices is greater than the spacing between known points on a slice. Many visualization and image-analysis tasks, however, require the 3-D image to have equal sample spacing in all directions. To meet this requirement, one applies an interpolation technique to the known 3D image to generate a new uniformly sampled 3-D image. We propose a nonlinear-ftlter-based approach to gray-scale interpolation of 3-D images. The method, referred to as column-fitting interpolation, is reminiscent of the maximum-homogeneity filter used for image enhancement. We also draw upon the paradigm of relaxation labeling to devise an improved column-fitting interpolator. Both methods are typically more effecthe than traditional gray-scale interpolation techniques.
Original language | English (US) |
---|---|
Pages (from-to) | 568-579 |
Number of pages | 12 |
Journal | IEEE transactions on medical imaging |
Volume | 15 |
Issue number | 4 |
DOIs | |
State | Published - 1996 |
All Science Journal Classification (ASJC) codes
- Software
- Radiological and Ultrasound Technology
- Computer Science Applications
- Electrical and Electronic Engineering