TY - JOUR
T1 - Nonlinear forecast error growth of rapidly intensifying hurricane harvey (2017) examined through convection-permitting ensemble assimilation of GOES-16 all-sky radiances
AU - Minamide, Masashi
AU - Zhang, Fuqing
AU - Clothiaux, Eugene E.
N1 - Funding Information:
This research was partially supported by NSF Grant 1305798, ONR Grant N00014-18-1-2517, and NASA Grants NNX16AD84G and 80 NSSC19K0728. MM was also supported by Japan's Funai Overseas Scholarship of the Funai Foundation for Information Technology. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Three rounds of detailed and exhaustive comments by Dr. Jason Sippel and two anonymous reviewers were highly beneficial; we appreciate and value the time they spent thinking about and commenting upon the manuscript. Computing was provided by the Texas Advanced Computing Center (TACC). All data presented are stored and can be accessed through the TACC data archive.
Funding Information:
Acknowledgments. This research was partially supported by NSF Grant 1305798, ONR Grant N00014-18-1-2517, and NASA Grants NNX16AD84G and 80 NSSC19K0728. MM was also supported by Japan’s Funai Overseas Scholarship of the Funai Foundation for Information Technology. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Three rounds of detailed and exhaustive comments by Dr. Jason Sippel and two anonymous reviewers were highly beneficial; we appreciate and value the time they spent thinking about and commenting upon the manuscript. Computing was provided by the Texas Advanced Computing Center (TACC). All data presented are stored and can be accessed through the TACC data archive.
Publisher Copyright:
© 2020 American Meteorological Society.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - The dynamics and predictability of the rapid intensification (RI) of Hurricane Harvey (2017) were examined using convection-permitting initialization, analysis, and prediction from a cycling ensemble Kalman filter (EnKF) that assimilated all-sky infrared radiances from the Advanced Baseline Imager on GOES-16. The EnKF analyses were able to evolve the various scales of the radiance fields associated with Harvey close to those observed, including those associated with scattered individual convective cells before the onset of rapid intensification (RI) and the organized vortex-scale convective system during and after RI. This was true for more than 3 days of a continuous assimilation cycling. Deterministic forecasts initialized from the EnKF analyses captured the rapidly deepening intensity of Harvey more than 24 h prior to its onset. To explore the predictability of Harvey's intensity during RI, ensemble probabilistic forecasts and sensitivity analyses were conducted. It was found that significant ensemble spread growth was induced by initial perturbations individually in either the wind or moisture fields. The nonlinear interactions between wind and moisture perturbations further limited the predictability of the intensification process of Harvey by increasing the uncertainty in the simulated wind and moisture distributions and modifying the convective activity and its feedback on vortex flow. This study highlights both the importance of better initializing the dynamic and moisture state variables simultaneously and the potential contribution of satellite all-sky radiance assimilation on constraining them and their associated convective activity that impacts RI of tropical cyclones.
AB - The dynamics and predictability of the rapid intensification (RI) of Hurricane Harvey (2017) were examined using convection-permitting initialization, analysis, and prediction from a cycling ensemble Kalman filter (EnKF) that assimilated all-sky infrared radiances from the Advanced Baseline Imager on GOES-16. The EnKF analyses were able to evolve the various scales of the radiance fields associated with Harvey close to those observed, including those associated with scattered individual convective cells before the onset of rapid intensification (RI) and the organized vortex-scale convective system during and after RI. This was true for more than 3 days of a continuous assimilation cycling. Deterministic forecasts initialized from the EnKF analyses captured the rapidly deepening intensity of Harvey more than 24 h prior to its onset. To explore the predictability of Harvey's intensity during RI, ensemble probabilistic forecasts and sensitivity analyses were conducted. It was found that significant ensemble spread growth was induced by initial perturbations individually in either the wind or moisture fields. The nonlinear interactions between wind and moisture perturbations further limited the predictability of the intensification process of Harvey by increasing the uncertainty in the simulated wind and moisture distributions and modifying the convective activity and its feedback on vortex flow. This study highlights both the importance of better initializing the dynamic and moisture state variables simultaneously and the potential contribution of satellite all-sky radiance assimilation on constraining them and their associated convective activity that impacts RI of tropical cyclones.
UR - http://www.scopus.com/inward/record.url?scp=85098861263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098861263&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-19-0279.1
DO - 10.1175/JAS-D-19-0279.1
M3 - Article
AN - SCOPUS:85098861263
SN - 0022-4928
VL - 77
SP - 4277
EP - 4296
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 12
ER -