Nonlinear (loop) quantum cosmology

Martin Bojowald, Alexander L. Chinchilli, David Simpson, Christine C. Dantas, Matthew Jaffe

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a nonlinear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of nonlinear and nonlocal equations suggests new questions for mathematical and computational investigations, and general properties of nonlinear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature Universe can arise from tiny local contributions adding up coherently in large regions.

Original languageEnglish (US)
Article number124027
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume86
Issue number12
DOIs
StatePublished - Dec 13 2012

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Nonlinear (loop) quantum cosmology'. Together they form a unique fingerprint.

Cite this