TY - JOUR
T1 - Nonparametric Finite Mixture of Gaussian Graphical Models
AU - Lee, Kevin H.
AU - Xue, Lingzhou
N1 - Funding Information:
The authors thank the editor, an associate editor, and two referees for their constructive comments and suggestions. Lingzhou Xue’s research is partially supported by the National Science Foundation grant DMS-1505256.
Publisher Copyright:
© 2018, © 2018 American Statistical Association and the American Society for Quality.
PY - 2018/10/2
Y1 - 2018/10/2
N2 - Graphical models have been widely used to investigate the complex dependence structure of high-dimensional data, and it is common to assume that observed data follow a homogeneous graphical model. However, observations usually come from different resources and have heterogeneous hidden commonality in real-world applications. Thus, it is of great importance to estimate heterogeneous dependencies and discover a subpopulation with certain commonality across the whole population. In this work, we introduce a novel regularized estimation scheme for learning nonparametric finite mixture of Gaussian graphical models, which extends the methodology and applicability of Gaussian graphical models and mixture models. We propose a unified penalized likelihood approach to effectively estimate nonparametric functional parameters and heterogeneous graphical parameters. We further design an efficient generalized effective expectation-maximization (EM) algorithm to address three significant challenges: high-dimensionality, nonconvexity, and label switching. Theoretically, we study both the algorithmic convergence of our proposed algorithm and the asymptotic properties of our proposed estimators. Numerically, we demonstrate the performance of our method in simulation studies and a real application to estimate human brain functional connectivity from attention deficit hyperactivity disorder (ADHD) imaging data, where two heterogeneous conditional dependencies are explained through profiling demographic variables and supported by existing scientific findings.
AB - Graphical models have been widely used to investigate the complex dependence structure of high-dimensional data, and it is common to assume that observed data follow a homogeneous graphical model. However, observations usually come from different resources and have heterogeneous hidden commonality in real-world applications. Thus, it is of great importance to estimate heterogeneous dependencies and discover a subpopulation with certain commonality across the whole population. In this work, we introduce a novel regularized estimation scheme for learning nonparametric finite mixture of Gaussian graphical models, which extends the methodology and applicability of Gaussian graphical models and mixture models. We propose a unified penalized likelihood approach to effectively estimate nonparametric functional parameters and heterogeneous graphical parameters. We further design an efficient generalized effective expectation-maximization (EM) algorithm to address three significant challenges: high-dimensionality, nonconvexity, and label switching. Theoretically, we study both the algorithmic convergence of our proposed algorithm and the asymptotic properties of our proposed estimators. Numerically, we demonstrate the performance of our method in simulation studies and a real application to estimate human brain functional connectivity from attention deficit hyperactivity disorder (ADHD) imaging data, where two heterogeneous conditional dependencies are explained through profiling demographic variables and supported by existing scientific findings.
UR - http://www.scopus.com/inward/record.url?scp=85056813276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056813276&partnerID=8YFLogxK
U2 - 10.1080/00401706.2017.1408497
DO - 10.1080/00401706.2017.1408497
M3 - Article
AN - SCOPUS:85056813276
SN - 0040-1706
VL - 60
SP - 511
EP - 521
JO - Technometrics
JF - Technometrics
IS - 4
ER -