TY - JOUR
T1 - Nonparametric models and methods for designs with dependent censored data
T2 - Part II
AU - O'Gorman, John T.
AU - Akritas, Michael G.
N1 - Funding Information:
This research was supported by NSF grant SES-031 8200.
PY - 2004
Y1 - 2004
N2 - We consider a fully nonparametric marginal model for the analysis of mixed models with censored data. Hypotheses in this context are formulated by decomposing the set of (marginal) distributions as introduced in Akritas and Arnold [Akritas, M. G. and Arnold, S. F. (1994). Fully nonparametric hypotheses for factorial designs I: Multivariate repeated measures designs. The Journal of the American Statistical Association, 89, 336-343]. The approach should be useful in cases where the assumptions of the proportional hazards or location shift models fail to be satisfied. The large sample distribution of the test statistics is based on a representation for Kaplan-Meier integrals. The methodology is illustrated with two real life examples using clustered data. These results generalize the results of O'Gorman and Akritas [O'Gorman, J. T. and Akritas, M. G. (2001). Nonparametric models and methods for designs with dependent censored data: Part I. Biometrics, 57, 88-95] for the case of repeated measures data.
AB - We consider a fully nonparametric marginal model for the analysis of mixed models with censored data. Hypotheses in this context are formulated by decomposing the set of (marginal) distributions as introduced in Akritas and Arnold [Akritas, M. G. and Arnold, S. F. (1994). Fully nonparametric hypotheses for factorial designs I: Multivariate repeated measures designs. The Journal of the American Statistical Association, 89, 336-343]. The approach should be useful in cases where the assumptions of the proportional hazards or location shift models fail to be satisfied. The large sample distribution of the test statistics is based on a representation for Kaplan-Meier integrals. The methodology is illustrated with two real life examples using clustered data. These results generalize the results of O'Gorman and Akritas [O'Gorman, J. T. and Akritas, M. G. (2001). Nonparametric models and methods for designs with dependent censored data: Part I. Biometrics, 57, 88-95] for the case of repeated measures data.
UR - http://www.scopus.com/inward/record.url?scp=2542539771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2542539771&partnerID=8YFLogxK
U2 - 10.1080/10485250410001656462
DO - 10.1080/10485250410001656462
M3 - Article
AN - SCOPUS:2542539771
SN - 1048-5252
VL - 16
SP - 613
EP - 622
JO - Journal of Nonparametric Statistics
JF - Journal of Nonparametric Statistics
IS - 3-4
ER -