North Atlantic climate variability from a self-organizing map perspective

David B. Reusch, Richard B. Alley, Bruce C. Hewitson

Research output: Contribution to journalArticlepeer-review

128 Scopus citations

Abstract

North Atlantic variability in general, and the North Atlantic Oscillation (NAO) in particular, is a long-studied, very important but still not well-understood problem in climatology. The recent trend to a higher wintertime NAO index was accompanied by an additional increase in the Azores High not coupled to changes in the Icelandic Low, as shown by a self-organizing maps (SOMs) analysis of monthly mean DJF mean sea level pressure data from 1957 to 2002. SOMs are a nonlinear tool to optimally extract a user-specified number of patterns or icons from an input data set and to uniquely relate any input data field to an icon, allowing analyses of occurrence frequencies and transitions complementary to principal component analysis (PCA). SOMs analysis of ERA-40 data finds a North Atlantic "monopole" roughly colocated with the mean position of the Azores High, as well as the well-known NAO dipole involving the Icelandic Low and the subtropical high. Little trend is shown in December, but the Azores High increased along with the NAO in January and February over the study interval, with implications for storminess in northwestern Europe. In short, our SOM-based analyses of winter MSLP have both confirmed prior knowledge and expanded it through the relative ease of use and power with nonlinear systems of the SOM-based approach to climatological analysis.

Original languageEnglish (US)
Article numberD02104
JournalJournal of Geophysical Research Atmospheres
Volume112
Issue number2
DOIs
StatePublished - Jan 27 2007

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Materials Chemistry
  • Polymers and Plastics
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'North Atlantic climate variability from a self-organizing map perspective'. Together they form a unique fingerprint.

Cite this