Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training

Yunyong Ko, Dongwon Lee, Sang Wook Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

A large-batch training with data parallelism is a widely adopted approach to efficiently train a large deep neural network (DNN) model. Large-batch training, however, often suffers from the problem of the model quality degradation because of its fewer iterations. To alleviate this problem, in general, learning rate (lr) scaling methods have been applied, which increases the learning rate to make an update larger at each iteration. Unfortunately, however, we observe that large-batch training with state-of-the-art lr scaling methods still often degrade the model quality when a batch size crosses a specific limit, rendering such lr methods less useful. To this phenomenon, we hypothesize that existing lr scaling methods overlook the subtle but important differences across "layers"in training, which results in the degradation of the overall model quality. From this hypothesis, we propose a novel approach (LENA) toward the learning rate scaling for large-scale DNN training, employing: (1) a layer-wise adaptive lr scaling to adjust lr for each layer individually, and (2) a layer-wise state-aware warm-up to track the state of the training for each layer and finish its warm-up automatically. The comprehensive evaluation with variations of batch sizes demonstrates that LENA achieves the target accuracy (i.e., the accuracy of single-worker training): (1) within the fewest iterations across different batch sizes (up to 45.2% fewer iterations and 44.7% shorter time than the existing state-of-the-art method), and (2) for training very large-batch sizes, surpassing the limits of all baselines.

Original languageEnglish (US)
Title of host publicationWWW 2022 - Proceedings of the ACM Web Conference 2022
PublisherAssociation for Computing Machinery, Inc
Pages1851-1859
Number of pages9
ISBN (Electronic)9781450390965
DOIs
StatePublished - Apr 25 2022
Event31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, France
Duration: Apr 25 2022Apr 29 2022

Publication series

NameWWW 2022 - Proceedings of the ACM Web Conference 2022

Conference

Conference31st ACM World Wide Web Conference, WWW 2022
Country/TerritoryFrance
CityVirtual, Online
Period4/25/224/29/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training'. Together they form a unique fingerprint.

Cite this