Notch Activation Is Dispensable for D, L-Sulforaphane-Mediated Inhibition of Human Prostate Cancer Cell Migration

Eun Ryeong Hahm, Kumar Chandra-Kuntal, Dhimant Desai, Shantu Amin, Shivendra V. Singh

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

D, L-Sulforaphane (SFN), a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B) to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation) of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell migration, which should be viewed as a therapeutic advantage as Notch activation is frequent in human prostate cancers.

Original languageEnglish (US)
Article numbere44957
JournalPloS one
Volume7
Issue number9
DOIs
StatePublished - Sep 7 2012

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Notch Activation Is Dispensable for D, L-Sulforaphane-Mediated Inhibition of Human Prostate Cancer Cell Migration'. Together they form a unique fingerprint.

Cite this