@inproceedings{79e1186d2aff4076a85648c05133b6f0,
title = "Notice of Removal: Imaging in situ human kidney stones with the color Doppler ultrasound twinkling artifact",
abstract = "Hyperbaric pressures of 3-100 atmospheres absolute (ATA) have been shown to reduce the color Doppler ultrasound twinkling artifact on ex vivo human kidney stones, leading to the hypothesis that surface crevice microbubbles cause twinkling. Similarly supportive for the crevice bubble hypothesis is the suppression of kidney stone twinkling in animals breathing elevated levels of carbon dioxide. However, it is unclear whether stable microbubbles can exist on the surface of kidney stones in the human body. For the first time, we investigate the effect of hyperbaric pressure on in situ human kidney stones to determine whether stable microbubbles exist as measured by the color Doppler ultrasound twinkling artifact.",
author = "Julianna Simon and Barbrina Dunmire and Bryan Cunitz and Oleg Sapozhnikov and Jeffrey Thiel and James Holm and Michael Bailey",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 2017 IEEE International Ultrasonics Symposium, IUS 2017 ; Conference date: 06-09-2017 Through 09-09-2017",
year = "2017",
month = oct,
day = "31",
doi = "10.1109/ULTSYM.2017.8092599",
language = "English (US)",
series = "IEEE International Ultrasonics Symposium, IUS",
publisher = "IEEE Computer Society",
booktitle = "2017 IEEE International Ultrasonics Symposium, IUS 2017",
address = "United States",
}