Novel inverted tubular design for improved endoscope positioning

Ankit Saxena, Isak Lagnese, Barry Fell, Eric Pauli, Randy Haluck, Jason Moore

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To detect and treat colorectal cancers endoscopes are commonly used to perform colonoscopies, with an estimated 15 million performed in America every year. Endoscope designs rely on physicians physically pushing the long device into position through the intestine thereupon applying potentially damaging forces to the intestinal wall. To improve endoscopic procedures this paper presents the novel concept of Inverted Tubular Element Locomotion (ITEL) to reduce interaction forces between the endoscope and the intestine wall. Experiments are performed that demonstrate functionality of the tubular design and less than 3.5 kPa to deploy. The tube material thickness has a linear relationship with the force required. This unique design has the potential to enhance patient safety and to improve procedural efficiency.

Original languageEnglish (US)
Title of host publicationFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791841037
DOIs
StatePublished - Jan 1 2019
Event2019 Design of Medical Devices Conference, DMD 2019 - Minneapolis, United States
Duration: Apr 15 2019Apr 18 2019

Publication series

NameFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019

Conference

Conference2019 Design of Medical Devices Conference, DMD 2019
Country/TerritoryUnited States
CityMinneapolis
Period4/15/194/18/19

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Novel inverted tubular design for improved endoscope positioning'. Together they form a unique fingerprint.

Cite this