TY - JOUR
T1 - Novel molecular interactions of acylcarnitines and fatty acids with myoglobin
AU - Chintapalli, Sree V.
AU - Jayanthi, Srinivas
AU - Mallipeddi, Prema L.
AU - Gundampati, Ravikumar
AU - Suresh Kumar, Thallapuranam Krishnaswamy
AU - Van Rossum, Damian B.
AU - Anishkin, Andriy
AU - Adams, Sean H.
N1 - Publisher Copyright:
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2016/11/25
Y1 - 2016/11/25
N2 - Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g. type I fibers and cardiomyocytes), and raises the possibility that Mb also serves as an acylcarnitine-binding protein. We report for the first time the putative interaction and affinity characteristics for different chain lengths of both fatty acids and acylcarnitines with oxy-Mb using molecular dynamic simulations and isothermal titration calorimetry experiments. We found that short- to medium-chain fatty acids or acylcarnitines (ranging from C2:0 to C10:0) fail to achieve a stable conformation with oxy-Mb. Furthermore, our results indicate that C12:0 is the minimum chain length essential for stable binding of either fatty acids or acylcarnitines with oxy-Mb. Importantly, the empirical lipid binding studies were consistent with structural modeling. These results reveal that: (i) the lipid binding affinity for oxy-Mb increases as the chain length increases (i.e. C12:0 to C18:1), (ii) the binding affinities of acylcarnitines are higher when compared with their respective fatty acid counterparts, and (iii) both fatty acids and acylcarnitines bind to oxy-Mb in 1:1 stoichiometry. Taken together, our results support a model in which oxy-Mb is a novel regulator of long-chain acylcarnitine and fatty acid pools in Mb-rich tissues. This has important implications for physiological fuel management during exercise, and relevance to pathophysiological conditions (e.g. fatty acid oxidation disorders and cardiac ischemia) where long-chain acylcarnitine accumulation is evident.
AB - Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g. type I fibers and cardiomyocytes), and raises the possibility that Mb also serves as an acylcarnitine-binding protein. We report for the first time the putative interaction and affinity characteristics for different chain lengths of both fatty acids and acylcarnitines with oxy-Mb using molecular dynamic simulations and isothermal titration calorimetry experiments. We found that short- to medium-chain fatty acids or acylcarnitines (ranging from C2:0 to C10:0) fail to achieve a stable conformation with oxy-Mb. Furthermore, our results indicate that C12:0 is the minimum chain length essential for stable binding of either fatty acids or acylcarnitines with oxy-Mb. Importantly, the empirical lipid binding studies were consistent with structural modeling. These results reveal that: (i) the lipid binding affinity for oxy-Mb increases as the chain length increases (i.e. C12:0 to C18:1), (ii) the binding affinities of acylcarnitines are higher when compared with their respective fatty acid counterparts, and (iii) both fatty acids and acylcarnitines bind to oxy-Mb in 1:1 stoichiometry. Taken together, our results support a model in which oxy-Mb is a novel regulator of long-chain acylcarnitine and fatty acid pools in Mb-rich tissues. This has important implications for physiological fuel management during exercise, and relevance to pathophysiological conditions (e.g. fatty acid oxidation disorders and cardiac ischemia) where long-chain acylcarnitine accumulation is evident.
UR - http://www.scopus.com/inward/record.url?scp=84997611035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84997611035&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.754978
DO - 10.1074/jbc.M116.754978
M3 - Article
C2 - 27758871
AN - SCOPUS:84997611035
SN - 0021-9258
VL - 291
SP - 25133
EP - 25143
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 48
ER -