TY - JOUR
T1 - Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier
AU - Kong, Juan
AU - Zhang, Zhongyi
AU - Musch, Mark W.
AU - Ning, Gang
AU - Sun, Jun
AU - Hart, John
AU - Bissonnette, Marc
AU - Yan, Chun Li
PY - 2007
Y1 - 2007
N2 - Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR+/+ mice were mostly resistant to 2.5% DSS, VDR-/- mice developed severe diarrhea, rectal bleeding, and marked body weight loss, leading to death in 2 wk. Histological examination revealed extensive ulceration and impaired wound healing in the colonic epithelium of DSS-treated VDR -/- mice. Severe ulceration in VDR-/- mice was preceded by a greater loss of intestinal transepithelial electric resistance (TER) compared with VDR+/+ mice. Confocal and electron microscopy (EM) revealed severe disruption in epithelial junctions in VDR-/- mice after 3-day DSS treatment. Therefore, VDR-/- mice were much more susceptible to DSS-induced mucosal injury than VDR+/+ mice. In cell cultures, 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] markedly enhanced tight junctions formed by Caco-2 monolayers by increasing junction protein expression and TER and preserved the structural integrity of tight junctions in the presence of DSS. VDR knockdown with small interfering (si)RNA reduced the junction proteins and TER in Caco-2 monolayers. 1,25(OH)2D3 can also stimulate epithelial cell migration in vitro. These observations suggest that VDR plays a critical role in mucosal barrier homeostasis by preserving the integrity of junction complexes and the healing capacity of the colonic epithelium. Therefore, vitamin D deficiency may compromise the mucosal barrier, leading to increased susceptibility to mucosal damage and increased risk of IBD.
AB - Emerging evidence supports a pathological link between vitamin D deficiency and the risk of inflammatory bowel disease (IBD). To explore the mechanism we used the dextran sulfate sodium (DSS)-induced colitis model to investigate the role of the vitamin D receptor (VDR) in mucosal barrier homeostasis. While VDR+/+ mice were mostly resistant to 2.5% DSS, VDR-/- mice developed severe diarrhea, rectal bleeding, and marked body weight loss, leading to death in 2 wk. Histological examination revealed extensive ulceration and impaired wound healing in the colonic epithelium of DSS-treated VDR -/- mice. Severe ulceration in VDR-/- mice was preceded by a greater loss of intestinal transepithelial electric resistance (TER) compared with VDR+/+ mice. Confocal and electron microscopy (EM) revealed severe disruption in epithelial junctions in VDR-/- mice after 3-day DSS treatment. Therefore, VDR-/- mice were much more susceptible to DSS-induced mucosal injury than VDR+/+ mice. In cell cultures, 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] markedly enhanced tight junctions formed by Caco-2 monolayers by increasing junction protein expression and TER and preserved the structural integrity of tight junctions in the presence of DSS. VDR knockdown with small interfering (si)RNA reduced the junction proteins and TER in Caco-2 monolayers. 1,25(OH)2D3 can also stimulate epithelial cell migration in vitro. These observations suggest that VDR plays a critical role in mucosal barrier homeostasis by preserving the integrity of junction complexes and the healing capacity of the colonic epithelium. Therefore, vitamin D deficiency may compromise the mucosal barrier, leading to increased susceptibility to mucosal damage and increased risk of IBD.
UR - http://www.scopus.com/inward/record.url?scp=38349108166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349108166&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00398.2007
DO - 10.1152/ajpgi.00398.2007
M3 - Article
C2 - 17962355
AN - SCOPUS:38349108166
SN - 0193-1857
VL - 294
SP - G208-G216
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 1
ER -