TY - JOUR
T1 - NS3 helicase from the hepatitis C virus can function as a monomer or oligomer depending on enzyme and substrate concentrations
AU - Jennings, Thomas A.
AU - Mackintosh, Samuel G.
AU - Harrison, Melody K.
AU - Sikora, Deniz
AU - Sikora, Bartek
AU - Dave, Bhuvanesh
AU - Tackett, Alan J.
AU - Cameron, Craig E.
AU - Raney, Kevin D.
PY - 2009/2/20
Y1 - 2009/2/20
N2 - Hepatitis C virus NS3 helicase can unwind double-stranded DNA and RNA and has been proposed to form oligomeric structures. Here we examine the DNA unwinding activity of monomeric NS3. Oligomerization was measured by preparing a fluorescently labeled form of NS3, which was titrated with unlabeled NS3, resulting in a hyperbolic increase in fluorescence anisotropy and providing an apparent equilibrium dissociation constant of 236 nM. To evaluate the DNA binding activity of individual subunits within NS3 oligomers, two oligonucleotides were labeled with fluorescent donor or acceptor molecules and then titrated with NS3. Upon the addition of increasing concentrations of NS3, fluorescence energy transfer was observed, which reached a plateau at a 1:1 ratio of NS3 to oligonucleotides, indicating that each subunit within the oligomeric form of NS3 binds to DNA. DNA unwinding was measured under multiple turnover conditions with increasing concentrations of NS3; however, no increase in specific activity was observed, even at enzyme concentrations greater than the apparent dissociation constant for oligomerization. An ATPase-deficient form of NS3, NS3(D290A), was prepared to explore the functional consequences of oligomerization. Under single turnover conditions in the presence of excess concentration of NS3 relative to DNA, NS3(D290A) exhibited a dominant negative effect. However, under multiple turnover conditions in which DNA concentration was in excess to enzyme concentration, NS3(D290A) did not exhibit a dominant negative effect. Taken together, these data support a model in which monomeric forms of NS3 are active. Oligomerization of NS3 occurs, but subunits can function independently or cooperatively, dependent upon the relative concentration of the DNA.
AB - Hepatitis C virus NS3 helicase can unwind double-stranded DNA and RNA and has been proposed to form oligomeric structures. Here we examine the DNA unwinding activity of monomeric NS3. Oligomerization was measured by preparing a fluorescently labeled form of NS3, which was titrated with unlabeled NS3, resulting in a hyperbolic increase in fluorescence anisotropy and providing an apparent equilibrium dissociation constant of 236 nM. To evaluate the DNA binding activity of individual subunits within NS3 oligomers, two oligonucleotides were labeled with fluorescent donor or acceptor molecules and then titrated with NS3. Upon the addition of increasing concentrations of NS3, fluorescence energy transfer was observed, which reached a plateau at a 1:1 ratio of NS3 to oligonucleotides, indicating that each subunit within the oligomeric form of NS3 binds to DNA. DNA unwinding was measured under multiple turnover conditions with increasing concentrations of NS3; however, no increase in specific activity was observed, even at enzyme concentrations greater than the apparent dissociation constant for oligomerization. An ATPase-deficient form of NS3, NS3(D290A), was prepared to explore the functional consequences of oligomerization. Under single turnover conditions in the presence of excess concentration of NS3 relative to DNA, NS3(D290A) exhibited a dominant negative effect. However, under multiple turnover conditions in which DNA concentration was in excess to enzyme concentration, NS3(D290A) did not exhibit a dominant negative effect. Taken together, these data support a model in which monomeric forms of NS3 are active. Oligomerization of NS3 occurs, but subunits can function independently or cooperatively, dependent upon the relative concentration of the DNA.
UR - http://www.scopus.com/inward/record.url?scp=64149127878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64149127878&partnerID=8YFLogxK
U2 - 10.1074/jbc.M805540200
DO - 10.1074/jbc.M805540200
M3 - Article
C2 - 19088075
AN - SCOPUS:64149127878
SN - 0021-9258
VL - 284
SP - 4806
EP - 4814
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -