TY - JOUR
T1 - NSOM investigations of the spectroscopy and morphology of self-assembled multilayered thin films
AU - Kerimo, Josef
AU - Adams, David M.
AU - Barbara, Paul F.
AU - Kaschak, David M.
AU - Mallouk, Thomas E.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1998/11/19
Y1 - 1998/11/19
N2 - Near-field scanning optical microscopy (NSOM) and atomic force microscopy (AFM) have been employed to spatially resolve the complex nanoscale morphologies, spectroscopy, and energy-transfer efficiencies of self-assembled multilayered structures composed of alternating layers of α-zirconium phosphate [α-Zr(HPO4)2] (ZrP) and dye-labeled poly(allylamine hydrochloride) (dye-PAH) (where dye = Fluorescein (FL), Rhodamine B (RhB), or Texas Red (TR)). Two types of multilayer films have been investigated, namely, glass/anchor/ ZrP/dye-PAH and glass/anchor/ZrP/dye-PAH/ZrP/dye-PAH, which were formed by the sequential layer-by-layer adsorption of the charged polyelectrolyte component layers. High- and low-coverage films were investigated. The glass/anchor/ZrP assemblies were shown to consist of a densely packed "tiled" motif of ZrP sheets which lie flat on the surface and cover more than 95% of the area, with average plate sizes of height = 13 (7) Å, width ≈ 150 nm. The dye-labeled polymer layers in glass/anchor/ZrP/dye-PAH and glass/ anchor/ZrP/dye-PAH7ZrP/dye-PAH were shown to adhere to the surface of the ZrP sheets and fill in the cracks between the sheets to a lesser extent. The measured heights of these polymer-coated multilayer films are 26(9) and 48(15) Å, respectively. These heights are consistent with theoretical estimates of ideally packed ionic films (28 and 48 Å, respectively). Dual-wavelength fluorescence NSOM imaging at 580 nm and >610 nm and near-field photobleach experiments were used to spatially resolve nanoscopic regions that display energy transfer between the layers.
AB - Near-field scanning optical microscopy (NSOM) and atomic force microscopy (AFM) have been employed to spatially resolve the complex nanoscale morphologies, spectroscopy, and energy-transfer efficiencies of self-assembled multilayered structures composed of alternating layers of α-zirconium phosphate [α-Zr(HPO4)2] (ZrP) and dye-labeled poly(allylamine hydrochloride) (dye-PAH) (where dye = Fluorescein (FL), Rhodamine B (RhB), or Texas Red (TR)). Two types of multilayer films have been investigated, namely, glass/anchor/ ZrP/dye-PAH and glass/anchor/ZrP/dye-PAH/ZrP/dye-PAH, which were formed by the sequential layer-by-layer adsorption of the charged polyelectrolyte component layers. High- and low-coverage films were investigated. The glass/anchor/ZrP assemblies were shown to consist of a densely packed "tiled" motif of ZrP sheets which lie flat on the surface and cover more than 95% of the area, with average plate sizes of height = 13 (7) Å, width ≈ 150 nm. The dye-labeled polymer layers in glass/anchor/ZrP/dye-PAH and glass/ anchor/ZrP/dye-PAH7ZrP/dye-PAH were shown to adhere to the surface of the ZrP sheets and fill in the cracks between the sheets to a lesser extent. The measured heights of these polymer-coated multilayer films are 26(9) and 48(15) Å, respectively. These heights are consistent with theoretical estimates of ideally packed ionic films (28 and 48 Å, respectively). Dual-wavelength fluorescence NSOM imaging at 580 nm and >610 nm and near-field photobleach experiments were used to spatially resolve nanoscopic regions that display energy transfer between the layers.
UR - http://www.scopus.com/inward/record.url?scp=0000594014&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000594014&partnerID=8YFLogxK
U2 - 10.1021/jp982086c
DO - 10.1021/jp982086c
M3 - Article
AN - SCOPUS:0000594014
SN - 1520-6106
VL - 102
SP - 9451
EP - 9460
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 47
ER -