Nuclear, cytosolic, and surface-localized poly(A)-binding proteins of Plasmodium yoelii

Allen M. Minns, Kevin J. Hart, Suriyasri Subramanian, Susan Hafenstein, Scott E. Lindner

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Malaria is a devastating illness that causes approximately 500,000 deaths annually. The malaria-causing parasite (Plasmodium genus) uses the process of translational repression to regulate its growth, development, and transmission. As poly(A)- binding proteins (PABP) have been identified as critical components of RNA metabolism and translational repression in model eukaryotes and in Plasmodium, we have identified and investigated two PABPs in Plasmodium yoelii, PyPABP1 and PyPABP2. In contrast to most single-celled eukaryotes, Plasmodium closely resembles metazoans and encodes both a nuclear PABP and a cytosolic PABP; here, we provide multiple lines of evidence in support of this observation. The conserved domain architectures of PyPABP1 and PyPABP2 resemble those of yeast and metazoans, while multiple independent binding assays demonstrated their ability to bind very strongly and specifically to poly(A) sequences. Interestingly, we also observed that purified PyPABP1 forms homopolymeric chains despite exhaustive RNase treatment in vitro. Finally, we show by indirect immunofluorescence assays (IFAs) that PyPABP1 and PyPABP2 are cytoplasm- and nucleusassociated PABPs during the blood stages of the life cycle. Surprisingly, however, PyPABP1 was instead observed to also be localized on the surface of transmitted salivary gland sporozoites and to be deposited in trails when parasites glide on a substrate. This is the third RNA-binding protein verified to be found on the sporozoite surface, and the data may point to an unappreciated RNA-centered interface between the host and parasite.

Original languageEnglish (US)
Article numbere00435-17
Issue number1
StatePublished - Jan 1 2018

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'Nuclear, cytosolic, and surface-localized poly(A)-binding proteins of Plasmodium yoelii'. Together they form a unique fingerprint.

Cite this