Nitric oxide (NO) releasing biomaterials are a promising approach against medical device associated microbial infection. In contrast to the bacteria-killing effects of NO at high concentrations, NO at low concentrations serves as an important signaling molecule to inhibit biofilm formation or disperse mature biofilms by regulating the intracellular nucleotide second messenger signaling network such as cyclic dimeric guanosine monophosphate (c-di-GMP) for many Gram-negative bacterial strains. However, Gram-positive staphylococcal bacteria are the most commonly diagnosed microbial infections on indwelling devices, but much less is known about the nucleotide messengers and their response to NO as well as the mechanism by which NO inhibits biofilm formation. This study investigated the cyclic nucleotide second messengers c-di-GMP, cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic adenosine monophosphate (cAMP) in both Staphylococcus aureus (S. aureus) Newman D2C and Staphylococcus epidermidis (S. epidermidis) RP62A after incubating with S-nitroso-N-acetylpenicillamine (SNAP, NO donor) impregnated polyurethane (PU) films. Results demonstrated that NO release from the polymer films significantly reduced the c-di-GMP levels in S. aureus planktonic and sessile cells, and these bacteria showed inhibited biofilm formation. However, the effect of NO release on c-di-GMP in S. epidermidis was weak, but rather, S. epidermidis showed significant reduction in c-di-AMP levels in response to NO release and also showed reduced biofilm formation. Results strongly suggest that NO regulates the nucleotide second messenger signaling network in different ways for these two bacteria, but for both bacteria, these changes in signaling affect the formations of biofilms. These findings provide cues to understand the mechanism of Staphylococcus biofilm inhibition by NO and suggest novel targets for antibiofilm interventions.

Original languageEnglish (US)
Pages (from-to)3285-3296
Number of pages12
JournalACS Biomaterials Science and Engineering
Issue number6
StatePublished - Jun 12 2023

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Cite this