TY - JOUR
T1 - Numerical investigation of closed-loop geothermal systems in deep geothermal reservoirs
AU - White, Mark
AU - Vasyliv, Yaroslav
AU - Beckers, Koenraad
AU - Martinez, Mario
AU - Balestra, Paolo
AU - Parisi, Carlo
AU - Augustine, Chad
AU - Bran-Anleu, Gabriela
AU - Horne, Roland
AU - Pauley, Laura
AU - Bettin, Giorgia
AU - Marshall, Theron
AU - Bernat, Anastasia
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/1
Y1 - 2024/1
N2 - Closed-loop geothermal systems (CLGSs) rely on circulation of a heat transfer fluid in a closed-loop design without penetrating the reservoir to extract subsurface heat and bring it to the surface. We developed and applied numerical models to study u-shaped and coaxial CLGSs in hot-dry-rock over a more comprehensive parameter space than has been studied before, including water and supercritical CO2 (sCO2) as working fluids. An economic analysis of each realization was performed to evaluate the levelized cost of heat (LCOH) for direct heating application and levelized cost of electricity (LCOE) for electrical power generation. The results of the parameter study, composed of 2.5 million simulations, combined with a plant and economic model comprise the backbone of a publicly accessible web application that can be used to query, analyze, and plot outlet states, thermal and mechanical power output, and LCOH/LCOE, thereby facilitating feasibility studies led by potential developers, geothermal scientists, or the general public (https://gdr.openei.org/submissions/1473). Our results indicate competitive LCOH can be achieved; however, competitive LCOE cannot be achieved without significant reductions in drilling costs. We also present a site-based case study for multi-lateral systems and discuss how our comprehensive single-lateral analyses can be applied to approximate multi-lateral CLGSs. Looking beyond hot-dry-rock, we detail CLGS studies in permeable wet rock, albeit for a more limited parameter space, indicating that reservoir permeability of greater than 250 mD is necessary to significantly improve CLGS power production, and that reservoir temperatures greater than 200 °C, achieved by going to greater depths (∼3–4 km), may significantly enhance power production.
AB - Closed-loop geothermal systems (CLGSs) rely on circulation of a heat transfer fluid in a closed-loop design without penetrating the reservoir to extract subsurface heat and bring it to the surface. We developed and applied numerical models to study u-shaped and coaxial CLGSs in hot-dry-rock over a more comprehensive parameter space than has been studied before, including water and supercritical CO2 (sCO2) as working fluids. An economic analysis of each realization was performed to evaluate the levelized cost of heat (LCOH) for direct heating application and levelized cost of electricity (LCOE) for electrical power generation. The results of the parameter study, composed of 2.5 million simulations, combined with a plant and economic model comprise the backbone of a publicly accessible web application that can be used to query, analyze, and plot outlet states, thermal and mechanical power output, and LCOH/LCOE, thereby facilitating feasibility studies led by potential developers, geothermal scientists, or the general public (https://gdr.openei.org/submissions/1473). Our results indicate competitive LCOH can be achieved; however, competitive LCOE cannot be achieved without significant reductions in drilling costs. We also present a site-based case study for multi-lateral systems and discuss how our comprehensive single-lateral analyses can be applied to approximate multi-lateral CLGSs. Looking beyond hot-dry-rock, we detail CLGS studies in permeable wet rock, albeit for a more limited parameter space, indicating that reservoir permeability of greater than 250 mD is necessary to significantly improve CLGS power production, and that reservoir temperatures greater than 200 °C, achieved by going to greater depths (∼3–4 km), may significantly enhance power production.
UR - http://www.scopus.com/inward/record.url?scp=85175711031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85175711031&partnerID=8YFLogxK
U2 - 10.1016/j.geothermics.2023.102852
DO - 10.1016/j.geothermics.2023.102852
M3 - Article
AN - SCOPUS:85175711031
SN - 0375-6505
VL - 116
JO - Geothermics
JF - Geothermics
M1 - 102852
ER -