TY - GEN
T1 - Numerical modeling of the effect of aerodynamics on NOx emissions and char burnout for combustion of coal in O2/CO 2
AU - Naredi, Prabhat
AU - Pisupati, Sarma V.
PY - 2006
Y1 - 2006
N2 - Combustion of coal in O2 and Recycled Flue Gas (RFG) medium is one of the approaches to obtain pure CO2 stream from an existing power plant that can be sequestered to reduce the greenhouse gas emissions into the atmosphere. Other advantages of this approach are an increase in char burnout and reduction in NOx emissions. However, in order to retrofit the existing boiler, approximately 30% O2 and 70% CO2 blend is required in the oxidizer stream. This leads to a decrease in the volume of combustion gases which subsequently changes the mixing pattern of oxidizer and coal particles inside the boiler. If coal particles and oxygen are not well mixed, NOx emissions will be altered due to local fuel rich pockets. In the present paper, an, axi-symmetric, 2-D computational model was developed using Fluent CFD code, for a 1,000 lb steam/hr "A-frame", water-tube research boiler to identify and optimize the key variables that influence the NOx emissions. Model predictions were compared with the experimental measurements of gas temperature, particle speed and gaseous emissions for Upper Freeport (Bituminous) coal fired in air medium. The effects on gaseous emissions such as NOx, and CO2 due to change in combustion gas loading and presence of increased CO2 are predicted under similar operating conditions. The effect of swirl number was analyzed to minimize the NOx emissions from the boiler in enriched O2/CO 2 medium.
AB - Combustion of coal in O2 and Recycled Flue Gas (RFG) medium is one of the approaches to obtain pure CO2 stream from an existing power plant that can be sequestered to reduce the greenhouse gas emissions into the atmosphere. Other advantages of this approach are an increase in char burnout and reduction in NOx emissions. However, in order to retrofit the existing boiler, approximately 30% O2 and 70% CO2 blend is required in the oxidizer stream. This leads to a decrease in the volume of combustion gases which subsequently changes the mixing pattern of oxidizer and coal particles inside the boiler. If coal particles and oxygen are not well mixed, NOx emissions will be altered due to local fuel rich pockets. In the present paper, an, axi-symmetric, 2-D computational model was developed using Fluent CFD code, for a 1,000 lb steam/hr "A-frame", water-tube research boiler to identify and optimize the key variables that influence the NOx emissions. Model predictions were compared with the experimental measurements of gas temperature, particle speed and gaseous emissions for Upper Freeport (Bituminous) coal fired in air medium. The effects on gaseous emissions such as NOx, and CO2 due to change in combustion gas loading and presence of increased CO2 are predicted under similar operating conditions. The effect of swirl number was analyzed to minimize the NOx emissions from the boiler in enriched O2/CO 2 medium.
UR - http://www.scopus.com/inward/record.url?scp=34748831654&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34748831654&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:34748831654
SN - 1890977233
SN - 9781890977238
T3 - 23rd Annual International Pittsburgh Coal Conference, PCC - Coal-Energy, Environment and Sustainable Development
BT - 23rd Annual International Pittsburgh Coal Conference, PCC - Coal-Energy, Environment and Sustainable Development
T2 - 23rd Annual International Pittsburgh Coal Conference, PCC - Coal-Energy, Environment and Sustainable Development
Y2 - 25 September 2006 through 28 September 2006
ER -