Numerical Simulation Study on Temporary Well Shut-In Methods in the Development of Shale Oil Reservoirs

Qitao Zhang, Wenchao Liu, Jiaxin Wei, Arash Dahi Taleghani, Hai Sun, Daobing Wang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Field tests indicate that temporary well shut-ins may enhance oil recovery from a shale reservoir; however, there is currently no systematic research to specifically guide such detailed operations in the field, especially for the design of the shut-in scheme and multiple rounds of shut-ins. In this study, the applicability of well shut-in operations for shale oil reservoirs is studied, and a numerical model is built using the finite element method. In order to simulate the production in a shale oil reservoir, two separate modules (i.e., Darcy’s law and phase transport) were two-way coupled together. The established model was validated by comparing its results with the analytical Buckley–Leverett equation. In this paper, the geological background and parameters of a shale oil reservoir in Chang-7 Member (Chenghao, China) were used for the analyses. The simulation results show that temporary well shut-in during production can significantly affect well performance. Implementing well shut-in could decrease the initial oil rate while decreasing the oil decline rate, which is conducive to long-term production. After continuous production for 1000 days, the oil rate with 120 days shut-in was 9.85% larger than the case with no shut-in. Besides, an optimal shut-in time has been identified as 60 days under our modeling conditions. In addition, the potential of several rounds of well shut-in operations was also tested in this study; it is recommended that one or two rounds of shut-ins be performed during development. When two rounds of shut-ins are implemented, it is recommended that the second round shut-in be performed after 300 days of production. In summary, this study reveals the feasibility of temporary well shut-in operations in the development of a shale oil reservoir and provides quantitative guidance to optimize these development scenarios.

Original languageEnglish (US)
Article number9161
JournalEnergies
Volume15
Issue number23
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Numerical Simulation Study on Temporary Well Shut-In Methods in the Development of Shale Oil Reservoirs'. Together they form a unique fingerprint.

Cite this