Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method

Wei Chen, Tong Qiu

Research output: Contribution to journalArticlepeer-review

110 Scopus citations

Abstract

Application of the smoothed particle hydrodynamics (SPH) method to the simulation of granular materials under large deformation is presented. The Drucker-Prager constitutive model with nonassociated flow rule is implemented in the SPH formulations to model granular flow in a continuum framework. The model developed is validated by experiments on the collapse of two-dimensional granular columns as reported in the literature. Simulations of the collapse of three-dimensional axisymmetric sand columns with various aspect ratios are also conducted. Numerical results of the granular flow pattern, final runout distance, final deposit height, and nondeformed region are in good agreement with the experimental observations as reported in the literature. It is suggested that despite being a continuum-scale model, the SPH model developed can be used to effectively simulate large deformation and dense flow of granular materials, and geomaterials in general, if proper constitutive models are implemented. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow.

Original languageEnglish (US)
Pages (from-to)127-135
Number of pages9
JournalInternational Journal of Geomechanics
Volume12
Issue number2
DOIs
StatePublished - Apr 24 2012

All Science Journal Classification (ASJC) codes

  • Geotechnical Engineering and Engineering Geology

Fingerprint

Dive into the research topics of 'Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method'. Together they form a unique fingerprint.

Cite this