TY - GEN
T1 - Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking
AU - Yin, Zhaozheng
AU - Collins, Robert T.
PY - 2008
Y1 - 2008
N2 - Given an object model and a black-box measure of similarity between the model and candidate targets, we consider visual object tracking as a numerical optimization problem. During normal tracking conditions when the object is visible from frame to frame, local optimization is used to track the local mode of the similarity measure in a parameter space of translation, rotation and scale. However, when the object becomes partially or totally occluded, such local tracking is prone to failure, especially when common prediction techniques like the Kalman filter do not provide a good estimate of object parameters in future frames. To recover from these inevitable tracking failures, we consider object detection as a global optimization problem and solve it via Adaptive Simulated Annealing (ASA), a method that avoids becoming trapped at local modes and is much faster than exhaustive search. As a Monte Carlo approach, ASA stochastically samples the parameter space, in contrast to local deterministic search. We apply cluster analysis on the sampled parameter space to redetect the object and renew the local tracker. Our numerical hybrid local and global mode-seeking tracker is validated on challenging airborne videos with heavy occlusion and large camera motions. Our approach outperforms state-of-the-art trackers on the VIVID benchmark datasets.
AB - Given an object model and a black-box measure of similarity between the model and candidate targets, we consider visual object tracking as a numerical optimization problem. During normal tracking conditions when the object is visible from frame to frame, local optimization is used to track the local mode of the similarity measure in a parameter space of translation, rotation and scale. However, when the object becomes partially or totally occluded, such local tracking is prone to failure, especially when common prediction techniques like the Kalman filter do not provide a good estimate of object parameters in future frames. To recover from these inevitable tracking failures, we consider object detection as a global optimization problem and solve it via Adaptive Simulated Annealing (ASA), a method that avoids becoming trapped at local modes and is much faster than exhaustive search. As a Monte Carlo approach, ASA stochastically samples the parameter space, in contrast to local deterministic search. We apply cluster analysis on the sampled parameter space to redetect the object and renew the local tracker. Our numerical hybrid local and global mode-seeking tracker is validated on challenging airborne videos with heavy occlusion and large camera motions. Our approach outperforms state-of-the-art trackers on the VIVID benchmark datasets.
UR - http://www.scopus.com/inward/record.url?scp=51949091966&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51949091966&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587542
DO - 10.1109/CVPR.2008.4587542
M3 - Conference contribution
AN - SCOPUS:51949091966
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -