Abstract

Introduction: The onset of puberty is associated with a shift in the circadian timing of sleep, leading to delayed sleep initiation [i.e., later sleep onset time (SOT)] due to later bedtimes and/or longer sleep onset latency (SOL). Several genome-wide association studies (GWAS) have identified genes that may be involved in the etiology of sleep phenotypes. However, circadian rhythms are also epigenetically regulated; therefore, epigenetic biomarkers may provide insight into the physiology of the pubertal sleep onset shift and the pathophysiology of prolonged or delayed sleep initiation. Results: The gene-wide analysis indicated differential methylation within or around 1818 unique genes across the sleep initiation measurements using self-report, actigraphy (ACT), and polysomnography (PSG), while GWAS-informed analysis yielded 67 genes. Gene hits were identified for bedtime (PSG), SOL (subjective, ACT and PSG) and SOT (subjective and PSG). DNA methylation within 12 genes was associated with both subjective and PSG-measured SOL, 31 with both ACT- and PSG-measured SOL, 19 with both subjective and ACT-measured SOL, and one gene (SMG1P2) had methylation sites associated with subjective, ACT- and PSG-measured SOL. Conclusions: Objective and subjective sleep initiation in adolescents is associated with altered DNA methylation in genes previously identified in adult GWAS of sleep and circadian phenotypes. Additionally, our data provide evidence for a potential epigenetic link between habitual (subjective and ACT) SOL and in-lab SOT and DNA methylation in and around genes involved in circadian regulation (i.e., RASD1, RAI1), cardiometabolic disorders (i.e., FADS1, WNK1, SLC5A6), and neuropsychiatric disorders (i.e., PRR7, SDK1, FAM172A). If validated, these sites may provide valuable targets for early detection and prevention of disorders involving prolonged or delayed SOT, such as insomnia, delayed sleep phase, and their comorbidity.

Original languageEnglish (US)
Article number136
JournalClinical Epigenetics
Volume15
Issue number1
DOIs
StatePublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Developmental Biology
  • Genetics(clinical)

Cite this