TY - JOUR
T1 - OBPC Symposium
T2 - Maize 2004 & beyond - Can agricultural biotechnology contribute to global food security?
AU - Sairam, R. V.
AU - Prakash, C. S.
PY - 2005/7
Y1 - 2005/7
N2 - Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impact on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can clearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the world's problems of hunger and poverty.
AB - Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impact on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can clearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the world's problems of hunger and poverty.
UR - http://www.scopus.com/inward/record.url?scp=24644470155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24644470155&partnerID=8YFLogxK
U2 - 10.1079/IVP2005663
DO - 10.1079/IVP2005663
M3 - Article
AN - SCOPUS:24644470155
SN - 1054-5476
VL - 41
SP - 424
EP - 430
JO - In Vitro Cellular and Developmental Biology - Plant
JF - In Vitro Cellular and Developmental Biology - Plant
IS - 4
ER -