Observation of a Negative Thermal Hysteresis in Relaxor Ferroelectric Polymers

Yang Liu, Aziguli Haibibu, Wenhan Xu, Zhubing Han, Qing Wang

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Hysteresis phenomena, including both electrical and thermal types, are essential to ferroelectric materials. The former, known as polarization-electric field hysteresis, has been intensively studied in a wide range of ferroelectric materials. However, relevant experimental evidence on thermal hysteresis remains limited, especially in ferroelectric polymers, even though thermal hysteresis is crucial to the caloric effect, which is usually the largest near the phase transition. Here, the thermal hysteresis behavior in ferroelectric polymers is studied in terms of temperature-dependent polarization upon heating and cooling. In contrast to common belief, a negative thermal hysteresis is observed in relaxor ferroelectric polymers, which is probably due to local stabilization of ferroelectric distortion induced by electric field. Using the polymer blend as a platform, it is further shown that the negative thermal hysteresis arises at the disappearance of long-range ferroelectric distortion and the thermal hysteresis behavior may be effectively controlled through the blend approach. This study not only provides deeper insights into electrocaloric effect in ferroelectric polymers but also offers an approach to study the critical phenomenon in a ferroelectric system.

Original languageEnglish (US)
Article number2000648
JournalAdvanced Functional Materials
Issue number25
StatePublished - Jun 1 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'Observation of a Negative Thermal Hysteresis in Relaxor Ferroelectric Polymers'. Together they form a unique fingerprint.

Cite this