Observation of anomalous amplitude modes in the kagome metal CsV3Sb5

Gan Liu, Xinran Ma, Kuanyu He, Qing Li, Hengxin Tan, Yizhou Liu, Jie Xu, Wenna Tang, Kenji Watanabe, Takashi Taniguchi, Libo Gao, Yaomin Dai, Hai Hu Wen, Binghai Yan, Xiaoxiang Xi

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

The kagome lattice provides a fertile platform to explore novel symmetry-breaking states. Charge-density wave (CDW) instabilities have been recently discovered in a new kagome metal family, commonly considered to arise from Fermi-surface instabilities. Here we report the observation of Raman-active CDW amplitude modes in CsV3Sb5, which are collective excitations typically thought to emerge out of frozen soft phonons, although phonon softening is elusive experimentally. The amplitude modes strongly hybridize with other superlattice modes, imparting them with clear temperature-dependent frequency shift and broadening, rarely seen in other known CDW materials. Both the mode mixing and the large amplitude mode frequencies suggest that the CDW exhibits the character of strong electron-phonon coupling, a regime in which phonon softening can cease to exist. Our work highlights the importance of the lattice degree of freedom in the CDW formation and points to the complex nature of the mechanism.

Original languageEnglish (US)
Article number3461
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Observation of anomalous amplitude modes in the kagome metal CsV3Sb5'. Together they form a unique fingerprint.

Cite this