Abstract
Quantum simulation with ultracold atoms has become a powerful technique to gain insight into interacting many-body systems. In particular, the possibility to study nonequilibrium dynamics offers a unique pathway to understand correlations and excitations in strongly interacting quantum matter. So far, coherent nonequilibrium dynamics has exclusively been observed in ultracold many-body systems of bosonic atoms. Here we report on the observation of coherent quench dynamics of fermionic atoms. A metallic state of ultracold spin-polarized fermions is prepared along with a Bose-Einstein condensate in a shallow three-dimensional optical lattice. After a quench that suppresses tunnelling between lattice sites for both the fermions and the bosons, we observe long-lived coherent oscillations in the fermionic momentum distribution, with a period that is determined solely by the Fermi-Bose interaction energy. Our results show that coherent quench dynamics can serve as a sensitive probe for correlations in delocalized fermionic quantum states and for quantum metrology.
Original language | English (US) |
---|---|
Article number | 6009 |
Journal | Nature communications |
Volume | 6 |
DOIs | |
State | Published - Feb 2015 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General
- General Physics and Astronomy