Observation of deep-level centers in 4H-silicon carbide metal oxide semiconductor field effect transistors by spin dependent recombination

Morgen S. Dautrich, Patrick M. Lenahan, Aivars J. Lelis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

In this study we report on spin-dependent recombination-detected electron spin resonance of interface/near interface defects in 4H-SiC metal oxide semiconductor field effect transistors with thermally grown SiO2 gate stacks. We demonstrate a distribution of performance-limiting defects which extends beyond the SiC/SiO2 boundary into the SiC bulk. Our results strongly indicate that the defects are intrinsic and we tentatively identify them as silicon vacancy-like centers on the basis of strong, but imprecisely-resolved, 29Si hyperfine sidepeaks in the magnetic resonance spectrum.

Original languageEnglish (US)
Title of host publicationSilicon Carbide and Related Materials - 2005, - Proceedings of the International Conference on Silicon Carbide and Related Materials -2005
PublisherTrans Tech Publications Ltd
Pages1011-1014
Number of pages4
EditionPART 2
ISBN (Print)9780878494255
DOIs
StatePublished - 2006
EventInternational Conference on Silicon Carbide and Related Materials 2005, (ICSCRM 2005) - Pittsburgh, PA, United States
Duration: Sep 18 2005Sep 23 2005

Publication series

NameMaterials Science Forum
NumberPART 2
Volume527-529
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

OtherInternational Conference on Silicon Carbide and Related Materials 2005, (ICSCRM 2005)
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/18/059/23/05

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Observation of deep-level centers in 4H-silicon carbide metal oxide semiconductor field effect transistors by spin dependent recombination'. Together they form a unique fingerprint.

Cite this