Observation of high-energy neutrinos from the Galactic plane

The IceCube Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

IceCube has discovered a flux of astrophysical neutrinos and presented evidence for the first neutrino sources, a flaring blazar known as TXS 0506+056 and the active galaxy NGC 1068. However, the sources responsible for the majority of the astrophysical neutrino flux remain elusive. In addition to hypothetical sources within our Galaxy, high energy neutrinos are produced when cosmic rays interact at their acceleration sites and during propagation through the interstellar medium. The Galactic plane has therefore long been hypothesized as a neutrino source. In this contribution, new results are presented for searches of neutrino sources utilizing a dataset that builds upon recent advances in deep-learning-based reconstruction methods for neutrino-induced cascades. This work presents the first observation of high-energy neutrinos from the Milky Way Galaxy, rejecting the background-only hypothesis at 4.5 σ. The neutrino signal is consistent with diffuse emission from the Galactic plane, potentially in combination with emission by a population of sources.

Original languageEnglish (US)
Article number1108
JournalProceedings of Science
Volume444
StatePublished - Sep 27 2024
Event38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japan
Duration: Jul 26 2023Aug 3 2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Observation of high-energy neutrinos from the Galactic plane'. Together they form a unique fingerprint.

Cite this