Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator

Jie Fang, Kan Yao, Mingsong Wang, Zhuohang Yu, Tianyi Zhang, Taizhi Jiang, Suichu Huang, Brian A. Korgel, Mauricio Terrones, Andrea Alù, Yuebing Zheng

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Two-dimensional exciton-polaritons in monolayer transition metal dichalcogenides (TMDs) exhibit practical advantages in valley coherence, optical nonlinearities, and even bosonic condensation owing to their light-emission capability. To achieve robust exciton-polariton emission, strong photon-exciton couplings are required at the TMD monolayer, which is challenging due to its atomic thickness. High-quality (Q) factor optical cavities with narrowband resonances are an effective approach but typically limited to a specific excitonic state of a certain TMD material. Herein, we achieve on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances spanning the whole visible spectrum. By confining broadband light at the TMD monolayer, our one type of Mie resonator on different TMDs enables enhanced light-matter interactions with multiple excitonic states simultaneously. We demonstrate multi-Rabi splittings and robust polaritonic photoluminescence in monolayer WSe2, WS2, and MoS2. The hybrid system also shows the potential to approach the ultrastrong coupling regime.

Original languageEnglish (US)
Pages (from-to)9803-9810
Number of pages8
JournalNano letters
Volume23
Issue number21
DOIs
StatePublished - Nov 8 2023

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator'. Together they form a unique fingerprint.

Cite this