Observing the PTPS sample of evolved exoplanet host candidates using the NPOI

Ellyn K. Baines, J. Thomas Armstrong, Henrique R. Schmitt, R. T. Zavala, James A. Benson, Andrzej Niedzielski, Pawel Zielinski, Martin Vanko, Aleksander Wolszczan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We plan to measure the angular diameters of a sample of Penn State-Torun Planet Search (PTPS) giant exoplanet host star candidates using the Navy Precision Optical Interferometer. The radii of evolved giant stars obtained using spectroscopy are usually ill-defined because of the method's indirect nature and evolutionary model dependency. The star's radius is a critical parameter used to calculate luminosity and mass, which are often not well known for giant stars. Therefore, this problem also affects the orbital period, mass, and surface temperature of the planet. Our interferometric observations will significantly decrease the errors for these parameters. We present preliminary results from NPOI observations of six stars in the PTPS sample.

Original languageEnglish (US)
Title of host publicationOptical and Infrared Interferometry and Imaging V
EditorsMichelle J. Creech-Eakman, Fabien Malbet, Peter G. Tuthill
PublisherSPIE
ISBN (Electronic)9781510601932
DOIs
StatePublished - 2016
EventOptical and Infrared Interferometry and Imaging V - Edinburgh, United Kingdom
Duration: Jun 27 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9907
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherOptical and Infrared Interferometry and Imaging V
Country/TerritoryUnited Kingdom
CityEdinburgh
Period6/27/167/1/16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Observing the PTPS sample of evolved exoplanet host candidates using the NPOI'. Together they form a unique fingerprint.

Cite this