Off-Policy Evaluation With Online Adaptation for Robot Exploration in Challenging Environments

Yafei Hu, Junyi Geng, Chen Wang, John Keller, Sebastian Scherer

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Autonomous exploration has many important applications. However, classic information gain-based or frontier-based exploration only relies on the robot current state to determine the immediate exploration goal, which lacks the capability of predicting the value of future states and thus leads to inefficient exploration decisions. This letter presents a method to learn how 'good' states are, measured by the state value function, to provide a guidance for robot exploration in real-world challenging environments. We formulate our work as an off-policy evaluation (OPE) problem for robot exploration (OPERE). It consists of offline Monte-Carlo training on real-world data and performs Temporal Difference (TD) online adaptation to optimize the trained value estimator. We also design an intrinsic reward function based on sensor information coverage to enable the robot to gain more information with sparse extrinsic rewards. Results show that our method enables the robot to predict the value of future states so as to better guide robot exploration. The proposed algorithm achieves better prediction and exploration performance compared with the state-of-the-arts. To the best of our knowledge, this work for the first time demonstrates value function prediction on real-world dataset for robot exploration in challenging subterranean and urban environments.

Original languageEnglish (US)
Pages (from-to)3780-3787
Number of pages8
JournalIEEE Robotics and Automation Letters
Volume8
Issue number6
DOIs
StatePublished - Jun 1 2023

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Biomedical Engineering
  • Human-Computer Interaction
  • Mechanical Engineering
  • Computer Vision and Pattern Recognition
  • Computer Science Applications
  • Control and Optimization
  • Artificial Intelligence

Cite this