Oil-recovery predictions for surfactant polymer flooding

Khyati Rai, Russell T. Johns, Larry W. Lake, Mojdeh Delshad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

There is increasing interest in surfactant-polymer (SP) and alkali-surfactant-polymer (ASP) flooding because of the need to increase oil production from depleted and water flooded reservoirs. Prediction of oil recovery from SP flooding, however, is complex and time consuming. Thus, a quick and easy method is needed to screen reservoirs for potential SP floods. This paper presents a scaling model that is capable of producing reliable estimates of oil recovery for an SP flood using a simple spreadsheet calculation. The model is also useful for initial SP design. We present key dimensionless groups that control recovery for a SP flood. The proper physics for SP floods including the optimal salinity in the three-phase region and the trapping number for residual oil saturation determination has been incorporated. Based on these groups, a Box-Behnken experimental design is performed to generate response surface fits for oil recovery prediction at dimensionless times. The response surfaces derived can be used to estimate the oil recovery potential for any given reservoir and are ideal for screening large databases of reservoirs to identify the most attractive chemical flooding candidates. The response function can also be used for proper design of key parameters for SP and ASP flooding. Our model will aid engineers to understand how key parameters affect oil recovery without performing time consuming chemical simulations. This is the first time that dimensionless groups for SP flooding have been derived comprehensively to obtain a response function of oil recovery as a function of dimensionless groups.

Original languageEnglish (US)
Title of host publicationSociety of Petroleum Engineers - SPE Annual Technical Conference and Exhibition 2009, ATCE 2009
PublisherSociety of Petroleum Engineers (SPE)
Pages724-735
Number of pages12
ISBN (Print)9781615675753
DOIs
StatePublished - 2009
EventSPE Annual Technical Conference and Exhibition 2009, ATCE 2009 - New Orleans, LA, United States
Duration: Oct 4 2009Oct 7 2009

Publication series

NameProceedings - SPE Annual Technical Conference and Exhibition
Volume2

Other

OtherSPE Annual Technical Conference and Exhibition 2009, ATCE 2009
Country/TerritoryUnited States
CityNew Orleans, LA
Period10/4/0910/7/09

All Science Journal Classification (ASJC) codes

  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Oil-recovery predictions for surfactant polymer flooding'. Together they form a unique fingerprint.

Cite this