TY - JOUR
T1 - On a restricted m-non-squashing partition function
AU - Rødseth, Oystein J.
AU - Sellers, James Allen
PY - 2005/10/24
Y1 - 2005/10/24
N2 - For a fixed integer m ≥ 2, we say that a partition n = p1 + p2 + ⋯ + pk of a natural number n is m-non-squashing if p1 ≥ 1 and (m - 1)(p1 + ⋯ + Pj-i) ≤ pj for 2 ≤ j ≤ k. In this paper we give a, new bijective proof that the number of m-non-squashing partitions of n is equal to the number of m-ary partitions of n. Moreover, we prove a similar result for a certain restricted m-non-squashing partition function c(n) which is a natural generalization of the function which enumerates non-squashing partitions into distinct parts (originally introduced by Sloane and the second author). Finally, we prove that for each integer r ≥ 2, c(mr+1n) - c(mrn) = 0 (mod mr-1/dr-2), where d = gcd(2, m). partitions, m-non-squashing partitions, m-ary partitions, stacking boxes, congruences.
AB - For a fixed integer m ≥ 2, we say that a partition n = p1 + p2 + ⋯ + pk of a natural number n is m-non-squashing if p1 ≥ 1 and (m - 1)(p1 + ⋯ + Pj-i) ≤ pj for 2 ≤ j ≤ k. In this paper we give a, new bijective proof that the number of m-non-squashing partitions of n is equal to the number of m-ary partitions of n. Moreover, we prove a similar result for a certain restricted m-non-squashing partition function c(n) which is a natural generalization of the function which enumerates non-squashing partitions into distinct parts (originally introduced by Sloane and the second author). Finally, we prove that for each integer r ≥ 2, c(mr+1n) - c(mrn) = 0 (mod mr-1/dr-2), where d = gcd(2, m). partitions, m-non-squashing partitions, m-ary partitions, stacking boxes, congruences.
UR - http://www.scopus.com/inward/record.url?scp=27644590201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27644590201&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:27644590201
SN - 1530-7638
VL - 8
JO - Journal of Integer Sequences
JF - Journal of Integer Sequences
IS - 5
ER -