On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing

Christelle Guillo, James M. Karlinsey, James P. Landers

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Isoelectric focusing (IEF), traditionally accomplished in slab or tube gels, has also been performed extensively in capillary and, more recently, in microchip formats. IEF separations performed in microchips typically use electroosmotic flow (EOF) or chemical treatment to mobilize the focused zones past the detection point. This report describes the development and optimization of a microchip IEF method in a hybrid PDMS-glass device capable of controlling the mobilization of the focused zones past the detector using on-chip diaphragm pumping. The microchip design consisted of a glass fluid layer (separation channels), a PDMS layer and a glass valve layer (pressure connections and valve seats). Pressure mobilization was achieved on-chip using a diaphragm pump consisting of a series of reversible elastomeric valves, where a central diaphragm valve determined the volume of solution displaced while the gate valves on either side imparted directionality. The pumping rate could be adjusted to control the mobilization flow rate by varying the actuation times and pressure applied to the PDMS to actuate the valves. In order to compare the separation obtained using the chip with that obtained in a capillary, a serpentine channel design was used to match the separation length of the capillary, thereby evaluating the effect of diaphragm pumping itself on the overall separation quality. The optimized mIEF method was applied to the separation of labeled amino acids.

Original languageEnglish (US)
Pages (from-to)112-118
Number of pages7
JournalLab on a Chip
Issue number1
StatePublished - 2007

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering


Dive into the research topics of 'On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing'. Together they form a unique fingerprint.

Cite this